Mindstorm EV3

Objective:

1. To figure out the relationship between wheel circumference and distance traveled.
2. Create a conversation factor from cm to motor rotations
a. So you can measure a distance and make the robot travel the distance

Procedure A:

1. Create a data table for the following information
2. Measure and record the diameter of your wheel.
a. This is the distance across the whole wheel
3. Calculate and record the circumference of the wheel
a. Circumference $=$ pie * diameter
4. Predict how far your robot will travel when the motors are set to 3 motor rotations.
5. Create a program that will make your robot go forward for 3 motor rotations.
6. Run the program.
7. Measure and record the actual distance the robot traveled.
a. Repeat steps 6 and 7,3 more times
8. Find the average distance the robot traveled.
9. Calculate your percent error.
a. Using the average distance traveled.
10. Change the number of motor rotations and redo the lab.

Questions A:

1. How many cm does your robot travel during 360° of rotation (1 turn)?
2. How many degrees does the wheel turn if you wanted the robot to travel 15 cm ?
a. Creating a conversion factor (cross thingy) may be beneficial
3. You have a wheel with a diameter of 9 cm , how far will the robot travel if the motor turns 780° ?

Procedure B:

1. Figure out how you could be given a distance and then determine the number of motor rotations.

Questions B:

1. How many degrees does the motor rotates when your robot travels 45 cm ?
2. Challenge: Your robot travels 50 cm when the motors rotate 2000 degrees, what is the diameter of the wheels.

Assessment:

Mr. Gunkelman will choose a distance and you will have to program your robot to travel the selected distance.

