Work

Simple Machines and More

Applied Science

Efficiency

- The work done by you on a machine is called the input work and is symbolized by $W_{\text {in }}$.
- The work done by the machine is called the output work and is abbreviated $W_{\text {out }}$.

$$
\left.\begin{array}{c}
\text { Efficiency }(\%)=\frac{\text { Work Out }(J)}{\text { Work } \operatorname{In}(J)} * 100 \% \\
\text { Efficiency }
\end{array}=\frac{W_{\text {out }}}{W_{\text {in }}} * 100 \%\right)
$$

Types of Simple Machines

- A Simple machines is...
- A machine that does work with only one movement of the machine.
- What are the six types of simple machines:

1. lever	2. pulley	3. wheel and axle
4. screw	5. wedge.	6. inclined plane

Mechanical Advantage

- The ratio of the output force to the input force is the mechanical advantage of a machine.
- The mechanical advantage of a machine can be calculated from the following equation.

$$
\begin{aligned}
\text { Mechanical Advantage } & =\frac{\text { Force Out }(N)}{\text { Force } \operatorname{In}(N)} \\
M A & =\frac{F_{\text {out }}}{F_{\text {in }}}
\end{aligned}
$$

Making Work Easier

- Machines can make work easier by increasing the force that can be applied to an object.
- A second way that machines can make work easier is by increasing the distance over which a force can be applied.
- Machines can also make work easier by changing the direction of an applied force.

Levers

- A lever is a bar that is free to pivot or turn around a fixed point.
- The fixed point the lever pivots on is called the fulcrum.

Levers

- The input arm of the lever is the distance from the...
- fulcrum to the point where the input force is applied.
- The output arm is the distance from the... - fulcrum to the point where the output force is exerted by the lever.

Levers

- The output force produced by a lever depends on the \qquad of the input arm and the output arm.
- If the output arm is longer than the input arm, the law of conservation of energy requires that the output force be less than the input force.

Levers

- How many classes of levers are there?

$$
-3
$$

-What are there names?
$-1^{\text {st }}$ class
$-2^{\text {nd }}$ class
$-3^{\text {rd }}$ class

- Draw each of them in your notebook.

Levers

- If the output arm is shorter than the input arm, then the output force is greater than the input force.

Levers

- What is an example of a $1^{\text {st }}$ class lever?
- Teeter-totter, pry bar
- What is an example of a $2^{\text {nd }}$ class lever?
- Wheelbarrow
- What is an example of a $3^{\text {rd }}$ class lever
- Baseball bat

Ideal MA of a lever

- What is the IMA equation for a lever?

$$
I M A=\frac{L_{\text {in }}}{L_{\text {out }} \longleftarrow \text { Notice the "in" and the "out" }} \text { are switch from before!! }
$$

- Does it HAVE to be in meters?
- No, just has to cancel out!

Pulley

- A pulley is a grooved wheel with a rope, chain, or cable running along the groove.
- A fixed pulley is a modified first-class lever.
- The axle of the pulley acts as the Fulcrum .

Pulley

- The two sides of the pulley are the input arm and output arm.
- A pulley can change the direction of the input force or increase input force, depending on whether the pulley is fixed or moveable.

Fixed Pulley

- A fixed pulley is attached to something that doesn't move, such as a ceiling or wall.
- Because a fixed pulley changes only the direction of force, the MA is 1 .

Wheel and Axel

- A Wheel and Axel is a simple machine consisting of a shaft or axle attached to the center of a larger wheel, so that the wheel and axle rotate together.

Wheel and Axel

- What are some examples of a wheel and axel?
- Doorknobs, screwdrivers, faucet handles
- Usually the input force is applied to the wheel, and the output force is exerted by the axel.

MA of a Wheel and Axel

- A wheel and axle is another modified lever.
- The center of the axle is the Fulcrum .
- The input force is applied at the rim of the wheel.
- So the length of the input arm is the radius of the wheel.

Inclined Plane

- A sloping surface, such as a ramp that reduces the amount of force required to do work, is an Incline Plane

Screw

- A Screw is an inclined plane wrapped in a spiral around a cylindrical post.
- The MA of a screw is related to the spacing of the threads.
- The MA is larger if the threads are closer together. However, if the MA is larger, more turns of the screw are needed to drive it into some material.

MA of a Wheel and Axel

- The output force is exerted at the rim of the axle.
- So the length of the output arm is the radius of the axle
- What is the equation for the MA of a wheel

MA of an incline plane

- By pushing a box up an inclined plane, the input force is exerted over a longer distance compared to lifting the box straight up.
- What is the MA equation for an inclined plane

- The MA of an inclined plane for a given height is increased by making the plane longer.
- The wedge is also a simple machine where the inclined plane moves through an object or material.
- A wedge is an inclined plane with one or two sloping sides. It changes the direction of the input force.

