\qquad

Background:

- Data Collection
- Graphing

Objective:

Be able to predict how high a ball will bounce from a given height.

Requirements and Other Information:

1. On competition day, you will be dropping your ball onto a tile floor.
2. You may NOT drop your ball from a height greater than 3 meters.
a. If you do this, you will receive a " 0 " for the lab
3. You must record and graph data to accomplish this goal.
a. Must be in a typed table
b. Graph MUST be labeled, titled, etc.
4. You will get ONE drop on the competition day
a. So...Practice, Practice, Practice ()

Question:

1. Why did you choose your bounce back height? (i.e. why 250 cm and not 300 cm ?)

Data Collection

When collecting data think about

- WHAT type of data would be useful and HOW it is going to be useful
- WHAT measurements you should be using ($\mathrm{m}, \mathrm{cm}, \mathrm{mm} . .$.)
- HOW you are going to record the data
- 1 person, 2 people...
- WHAT you are going to DO with the data
- Find and average, max and min, ...

How to collect data

- You should always collect more than once
- For Example - You should measure the mass 2 or more times, measure the length 2 or more times, measure the temperature 2 or more times...
- You record ALL data, even if it seems wrong
- You get rid of "outliers"
- Figure out WHY you had the outlier

How to report data

- Data needs to be reported in a data TABLE
- The Table must have....
- Title for the entire table as well as each column
- Measurement labels IN the column titles
- Same number of decimal places (if applicable)

Graphing

- When making a graph the...
- Dependent variable is always on the vertical axis (y-axis)
- Independent variable is on the horizontal axis (x-axis).
- A graph should ALWAYS have a TITLE and LABELED AXIS
- When making a graph, you should make it large enough to use
- i.e. don't make a graph in the corner of a page, use most of the page
\qquad

Place the following data into a data table and then graph the data.

Assume I retraced my path home.

On Monday morning I walked 6 blocks North to the post office and then 3 blocks North to city hall and then returned home. In the afternoon, I walked 10 blocks East to the grocery store and back home.

On Tuesday morning I walked 6 blocks North to the post office, 14 blocks North to the restaurant, and 4 blocks North to the mechanic before returning home. That afternoon I walked 30 blocks East to the park and then returned home.

On Wednesday morning I walked to the post office and back home. In the afternoon I walked 8 blocks Northwest to the football field and 4 more blocks Northwest to the card store before going back home.

On Thursday morning I walked to the post office and then an additional 22 blocks North to the hardware store before going home. I the afternoon I walked 17 blocks West to the zoo and then 5 blocks West to the ice cream store before going back home.

On Friday morning I walked 9 blocks Southeast to the recycling center and then went home. In the afternoon I walked to the post office, the 14 blocks to the restaurant, and 3 blocks to the city hall. That afternoon I walked 1 block Southeast to the fire hydrant and back home.

Rebound Height Score Sheet

Graph

Neat.. 1 _
Labeled Axis (cm) ... 1 \qquad
Independent Variable on X (Drop).. 1
Dependent Variable on Y (Rebound) ... 1 \qquad
Title .. 1 1
Makes Sense .. 1 \qquad

Data
In a Table... 1
Neat.. 1 \qquad
Title .. 1 \qquad
Labeled Columns.. 1 1
Makes Sense .. 1 \qquad

Lab Report Format .. 10 \qquad
Title, names, date, class, problem .. 1
Hypothesis (Well thought out).. 1
Procedure... 2 2
Easy to follow, numbered, followed my sug.
Observations ... 1 \qquad
Data Table, Graph, Other Ob are present Conclusion 2
Supported/Not Supported AND why
Question:
3 \qquad
Well thought out and explains

Drop Height
.9 \qquad
(ranked from best to worst with pts distributed accordingly)

$$
\begin{aligned}
& \text { Score }=\frac{(\text { Actual Height }-\mid \text { Predicted Height } \mid)}{\text { Actual Height }} * 100 \\
& \left(\frac{(\ldots-\ldots}{\square}\right) * 100=
\end{aligned}
$$

Total \qquad
\qquad / 30

