MTV Worksheet

Name: ______(Show work)

- 1. What do the following variables stand for?
 - a. Δd = _____
 - b. Δt = _____
 - c. Δv = _____
 - d. Δa = _____
- 2. What are the equations for...
 - a. Average velocity

b. Average acceleration

c. Percent Error

- 3. Manipulate the velocity equation to solve for...
 - a. Time
 - b. Distance final

- 4. Manipulate the acceleration equation to solve for...
 - a. Time
 - b. Velocity initial
- 5. Find the average velocity for using the information given below.

a) A car travels from A to C in 1 hr and 20 minutes

b) A car travels from <u>C to F</u> in 2 hrs and 45 minutes.

- c) An object travels from <u>B to E</u> in 35 minutes
- 6. What is the average velocity (in m/s) for a person running 13.25 km in 2.5 hours?

7. A person is running 5.6 m/s for 22 minutes. How far (in m) did this person run?

Mr. Gunkelman Page | 2

MTV Worksheet

8.	If you run with an average velocity of 3.4 m/s for 5 minutes, how far will you travel (in m)?
9.	A car speeds up from 8 km/h to 20 km/h in 15 minutes. What is the acceleration of the car?
10.	A car comes to a stop in 5 seconds. What is the cars initial velocity if the cars acceleration was -6
	m/s ² ?
11.	A car is moving at 26 m/s over a 2 minute time period. What is the cars acceleration?

12. An object is moving with a speed of 3.5 m/s and accelerates to 12.4 m/s. If the object had an acceleration of 0.9 m/s^2 , how long did the object accelerate?

Mr. Gunkelman Page | 3

13. An object is moving with a speed of 12 km/h and accelerates to 45 km/h. What is the average acceleration for the object if it took 2 minutes to reach its final speed?

14. What is the percent error for the following? (Show work in box)

Estimated Number	Actual Number	% Error
45.5	45	
123	123.2	
10000	9655	
8.6	9.22	

15. You measure the length of a stick and record a measurement of 45 cm. The actual length of the stick is 46 cm, what is your percent error?

16. You estimate the time it will take you to run a distance to be 1 minute and 4 seconds. What is your percent error if it takes you 1 minute and 15 seconds? 1 minutes and 3 seconds?

Mr. Gunkelman Page | 4