Equations Simple Machines

(Applied Science)

Work

$\mathrm{W}=\mathrm{Fd} \quad \mathrm{F}=\quad \mathrm{d}=$
How much work are you doing if you apply 135 N of force to climb 60 m up a ladder? $135 * 60=8100 \mathrm{~J}$
How much force is required to climb up 30 meters of a ladder if you use 550 J of work to do it? $550 / 30=18.33 \mathrm{~N}$

Power

$\mathrm{P}=\mathrm{W} / \mathrm{t} \quad \mathrm{W}=\quad \mathbf{t}=$
How much power is required to perform 450 J of work in 30 seconds?
$450 / 30=15 \mathrm{~W}$
How much work is required to produce 550 W of power in 10 seconds?

$$
550 * 10=5500 \mathrm{~J}
$$

Mechanical Advantage

$M A=F_{\text {out }} / F_{\text {in }} \quad F_{\text {out }}=\quad F_{\text {in }}=$
What is the mechanical advantage for a machine that has an output force of 40 N when you input 67 N ?

Efficiency

$e=W_{\text {out }} / W_{\text {in }}{ }^{*} 100 \quad W_{\text {out }}=\quad W_{\text {in }}=$
If a machine has an efficiency of 82% and you input 400 J our work, how much work will the machine perform?

MA for Lever

MA for Wheel and Axel

MA for Ramp

